See kustutab teie kursuse kõigi peatükkide edenemis- ja vestlusandmed ning seda ei saa tagasi võtta!
Sõnastik
Chain Rule
Clairaut's theorem
Diagonalize
Directional derivative
Dot Product Cosine Formula
Linearize
Model
Partial sum
Spectral Theorem
Valige vasakul üks märksõnadest ...
Multivariable CalculusMatrix differentiation
Lugemise aeg: ~10 min
Just as elementary differentiation rules are helpful for optimizing single-variable functions, matrix differentiation rules are helpful for optimizing expressions written in matrix form. This technique is used often in statistics.
Suppose is a function from to .Writing , we define the Jacobian matrix (or derivative matrix) to be
Note that if m=1, then differentiating f with respect to \mathbf{x} is the same as taking the gradient of f.
With this definition, we obtain the following analogues to some basic single-variable differentiation results: if A is a constant matrix, then
\begin{align*}\frac{\partial}{\partial \mathbf{x}} (A \mathbf{x}) &= A \\\ \frac{\partial}{\partial \mathbf{x}} (\mathbf{x}' A) &= A' \\\ \frac{\partial}{\partial \mathbf{x}} (\mathbf{u}' \mathbf{v}) &= \mathbf{u}'\frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}'\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\end{align*}
The third of these equations is the rule.
The Hessian of a function f:\mathbb{R}^n \to \mathbb{R} may be written in terms of the matrix differentiation operator as follows:
Some authors define \frac{\partial f}{\partial \mathbf{x}'} to be \left(\frac{\partial f}{\partial \mathbf{x}}\right)', in which case the Hessian operator can be written as \frac{\partial^2}{\partial \mathbf{x} \partial \mathbf{x}'}.
Exercise Let f: \mathbb{R}^n \to \mathbb{R} be defined by f(\mathbf{x}) = \mathbf{x}' A \mathbf{x} where A is a symmetric matrix. Find \frac{\partial f}{\partial \mathbf{x}}.
Solution.We can apply the product rule to find that
Exercise Suppose A is an m\times n matrix and \mathbf{b} \in \mathbb{R}^m.Use matrix differentiation to find the vector \mathbf{x} which minimizes |A \mathbf{x} - \mathbf{b}|^2.Hint: begin by writing |A \mathbf{x} - \mathbf{b}|^2 as (A \mathbf{x} - \mathbf{b})' (A \mathbf{x} - \mathbf{b}).You may assume that the rank of A is n.
Solution.We write
\begin{align*}|A \mathbf{x} - \mathbf{b}|^2 &= (A \mathbf{x} - \mathbf{b})' (A \mathbf{x} - \mathbf{b}) \\\ &= \mathbf{x}' A' A \mathbf{x} - \mathbf{b}' A \mathbf{x} + \mathbf{x}' A' \mathbf{b} + |\mathbf{b}|^2.\end{align*}
To minimize this function, we find its gradient
\begin{align*}\frac{\partial}{\partial \mathbf{x}}|A \mathbf{x} - \mathbf{b}|^2 = 2\,\mathbf{x}' A' A - \mathbf{b}' A + (A'\mathbf{b})' = 2\mathbf{x}' A' A- 2\mathbf{b}' A\end{align*}